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Abstract. Commercial microwave links (CML) in telecommunication networks can provide relevant information for remote
sensing of precipitation and other environmental variables, such as path-averaged drop size distribution, evaporation or hu-
midity. To address this issue, the CoMMon field experiment (COmmercial Microwave links for urban rainfall MONitoring)
monitored a 38-GHz dual-polarized CML of 1.85 km at a high temporal resolution (4 s), as well as a collocated array of five
disdrometers and three rain gauges over one year. The dataset is complemented with observations from five nearby weather
stations. Raw and pre-processed data, which can be explored effortlessly with a custom static HTML viewer, are available
at https://doi.org/10.5281/zenodo.4524632 (Spackovi et al., 2020). The data quality is generally satisfactory and potentially
problematic measurements are flagged to help the analyst identify relevant periods for specific study purposes. Finally, we

encourage potential applications and discuss open issues regarding future remote sensing with CMLs.

1 Introduction

Accurate information on precipitation is important for many applications from agriculture to pluvial flooding (Chwala and
Kunstmann, 2019). Commercial microwave links from telecommunication networks (CMLs) represent a promising source of
information as their signals are disturbed by liquid and solid precipitation. Presently, there are an estimated 5 million CMLs
(Ericsson, 2019) deployed around the world and the widespread coverage of mobile phone networks includes sparsely or
completely ungauged areas. CMLs also observe precipitation close to the ground and can be queried remotely from network
operation centres within a few seconds enabling operational applications such as precipitation nowcasting or hydrological
forecasts and early flood warnings. Van Leth et al. (2018) made a dataset available to address errors of rainfall estimates
by three collocated microwave links. Gires et al. (2018) published a dataset of two months of disdrometer data using three

collocated devices and provided a dataset of disdrometer data collected during a measurement campaign testing a rainfall
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simulator (Gires et al., 2020). Unfortunately, datasets of microwave attenuation and observations of precipitation microphysics
with a high temporal resolution lack the ability to fully tap into this potential and identify current knowledge gaps (see below).

For example, the analysis of Chwala and Kunstmann (2019) suggests that operational datasets from real-world case studies
and methods, e.g., for baseline removal, are not openly available. As telecommunication providers are reluctant to share the
properties of CMLs, the majority of datasets and important meta information is available only to the research groups involved.
However, openly available datasets of precipitation microphysics and CML attenuation, ideally with detailed weather infor-
mation, are essential to test available theories and benchmark the prediction capabilities of developed methods, which were
mostly tuned and tested on non-public datasets.

The goal of this paper is to publish the unique dataset and documentation of the "CoMMon" (Commercial Microwave links
for rainfall MONitoring) experiment consisting of a 1-year-long field campaign in Diibendorf (CH), during which attenuation
data from a 38-GHz dual-polarized CML were collected, together with precipitation observations from rain gauges and dis-
drometers deployed along the CML path in high temporal resolution (Fig. 1). In addition, weather data, such as temperature,
dew point, relative humidity, and wind speed from two nearby weather stations, were acquired. Noteworthy features of the data
are: i) a dual-polarized CML, rather than single-polarization; ii) an array of disdrometers instead of in addition to rain gauges;
and iii) outdoor units of the CML operated with weather-protecting shields (Fig. 2), to investigate the impact of antenna wet-
ting, for approximately half of the experimental period. Last, but not least, the data will be useful to design outage-free radio
communication systems better (Kvicera et al., 2009).

This paper will, first, briefly describe the theory of rain retrieval and highlight the importance of drop size distribution. Sec-
ond, we present the experimental set up, sensor specifications, experimental campaign and structure of the collected datafiles.
The third section presents the database and the html viewer provided to explore the data efficiently. The fourth section discusses

potential future applications of the CoMMon dataset.

2 Data and methods
2.1 The importance of drop size distribution for rain retrieval from commercial microwave links

The attenuation of a microwave link signal is related to the drop size distribution along their path and the observed attenuation
can be used to calculate rain rate between two end nodes of a CML. The observed total loss L, (dB) is the difference of
transmitted and received signal power. Rainfall-induced specific attenuation k (dB km!), due to raindrops passing the path of
the microwave propagation, can be formulated as:

Ly — Ay — Ay

k =max( i

;0) 6]

where k is the specific attenuation (in dB km™!), A, (dB) is background (baseline) attenuation, A,, (dB) is wet antenna attenuation
and / (km) is path length. A; is usually determined during dry weather periods (Fencl et al., 2017; Polz et al., 2020) without

dew or rain occurrence (cf. Fig. 7, Fig. 8) and is assumed to have the same level during rainfall. A,, describes the impact of
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radome wetting. The importance of accurate estimation of A,, increases in the case of short CMLs when its contribution to the
observed attenuation is substantial (Pastorek et al., 2018).

The power-law relationship approximates the relation between attenuation caused by raindrops and rainfall intensity (Atlas
and Ulbrich, 1977):

k=a-R° @)

where R is the rain rate in mm h'! and parameters a and b are related to the microwave link characteristics (frequency, po-
larization) and drop size distribution (DSD) (Olsen et al., 1978). Value b is close to one for frequencies between 20 GHz and
40 GHz. While electromagnetic scattering for hydrometeors is generally complex (Eriksson, 2018), the specific attenuation of

signal k in dB km™! for liquid precipitation can be estimated from the drop size distribution:

k(f) =4.343 x 10? / Cex(D, f)N(D)dD 3)
D

where f is the frequency, D (mm) denotes equi-volumetric drop diameter, N(D) (m™ mm™) is the number of drops per unit
volume in drop diameter interval and C,.(D, f) is the extinction cross section at frequency f in m?> which determines the
attenuation from a single drop.

The accuracy of the power-law approximation (Eq. 2) can be assessed by comparing Eq. 3 to the rain rate R (Eq. 4) of the

observed drop spectrum:

R= 0.6 x 10737 /v(D)DSN(D)dD )
D
where v(D) is the terminal velocity of the drop in m s”!, D (mm) denotes equi-volumetric drop diameter and N(D) (m3 mm™)

is the number of drops per unit volume in drop diameter interval.
2.2 Field campaign

The campaign took place in Diibendorf, Switzerland. Figure 1 presents the layout of the CoMMon field campaign with all sites
(white pins) where the disdrometers and rain gauges were deployed. The two antennas were located at sites 1 (Diibendorf)
and 5 (Wangen) and the microwave link was 1.85 km long (red line). The area between the antennas consists mainly of an
airport, sport fields, agricultural fields, a shopping mall and a highway. Five optical disdrometers were placed at sites 2, 3, 4
and 5. The disdrometers at site 2 were collocated to enable quality control and the quantification of observation uncertainties.
Antenna radomes and outdoor units were weather-protected by large custom-made PVC shields for approximately half of the
experimental period (Fig. 2). The campaign also integrated three tipping bucket rain gauges at sites 2, 4 and 5 (Table 1). The
exact location of each site was chosen based on a compromise between proximity to the microwave link path, accessibility of
each location, and level of restricted access to prevent vandalism. The devices were situated far from roof edges to avoid wind

disturbances. The instrument types and specifications are provided in section 2.3 below.
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Figure 1. Layout of the CoMMon field campaign. The radio units are deployed at the end sites (site 1 and site 5). The direction of the link
is in red. Disdrometer and rain gauge positions are indicated by white pins. Site 2 contained two collocated disdrometers for data quality
control. Except for site 3, all rain gauges have a collocated disdrometer. The MeteoSwiss weather stations (yellow pins) are less than 6 to

10 km away. Two additional weather stations (green) are located at the Diibendorf airport (site 11 and site 29).

The campaign was launched on 9 March 2011 when the disdrometers and tipping bucket rain gauges were deployed. On
17 March 2011 two radio units of the CML were installed. The collected dataset is enhanced by the meteorological data
(MeteoSwiss, 2020) obtained from MeteoSwiss (the Federal Office for Meteorology and Climatology in Switzerland) for the
duration of the campaign. The weather stations are located in Ziirich within 6 to 10 km of the experimental area (Table 2).
Moreover, observations from two other weather stations located at the airport (Table 3) provided additional data for the time

period from 1 March 2011 to 27 September 2011. The campaign ended on 21 March 2012.
2.3 Instrumentation

The CML consisted of two MINI-LINK outdoor units manufactured by Ericsson comprising a radio and a Mini-Link antenna
(ANT20.3 38 HPX, Mod. No. UKY 210 75/DC15 SH) with a diameter of 30 cm. It is a duplex dual-polarized link which
has two communication channels with a horizontal and a vertical polarization. The resolution of the transmitted power (Tx)
was 1 dBm and for received power (Rx) it was approx. 1/3 dBm. The horizontally polarized EM waves were transmitted at

frequencies of 38°657.5 MHz from site 1 and 37°397.5 MHz from site 5. The vertically polarized EM waves were transmitted
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Figure 2. (top) Outdoor unit of the Dual-Pol MiniLink and the antenna radome without (left) and with custom shield (right). (bottom)

Timeline of the operational period of the shielding of antenna radomes.

at frequencies of 38°650.5 MHz from site 1 and 37°390.5 MHz from site 5. The length of the link was 1850 m. Measurement
intervals were changed from the original 15-min-setup to 4 s (instantaneous reading). Data were acquired by a software appli-
cation based on Simple Network Management Protocol (Wang et al., 2012). During the measurement campaign, plastic shields
were installed on the antennas on 6 October 2011 to avoid water films on the antenna radomes and to eliminate wet antenna
attenuation.

Raindrop information was collected by the 1% generation of the PARSIVEL optical disdrometer manufactured by OTT
Hydromet and retrofitted by EPFL-LTE to allow for remote access and data transfer (Jaffrain et al., 2011). The horizontal laser
beam had an area of 54 cm?. The measurement principle is based on the attenuation in received voltage and on the time required
for the passage of a particle through the laser beam. From this, the terminal fall velocity and the equi-volumetric drop diameter
can be estimated. The maximum area covered by the drop is related to the maximum attenuation. The PARSIVEL rain rate
(parameter 05 in Appendix C) retrieval is linked to the drop diameter. Drops larger than 1 mm are assumed to have an oblate
shape with its axis ratio linearly decreasing to 0.7 for drops with a diameter of 5 mm (Battaglia et al., 2010; Loffler-Mang
and Joss, 2000). Data were categorized into 32 non-equidistant velocity classes and 32 non-equidistant diameter classes (see
Appendix A and B). The first two diameter classes were always empty since they were outside the measurement range of the
device. The sampling resolution was 30 s.

Providing additional rainfall data, the collocated tipping bucket rain gauges (3029-1, Précis Mécanique) were the same type
of model and had been dynamically calibrated (Humphrey et al., 1997). Deployed 50 cm from the ground, it had a sampling
area of 400 cm?. Its bucket content of 4 g corresponded to the resolution of 0.1 mm of rain. The logger had a time resolution

0.1 s and its time drift was less than 2 min per month. The data were saved in the internal memory and downloaded on-site.
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Table 1. Characteristics of the sites.

Site Geographic Devices and ID
coordinates
1 47°24°4.80" N, CML antenna
8°37°43.10"E
436 m AMSL
2 47°24°17.64"N,  PARSIVEL disdrometers

8°37°47.64"E ID: P40 and P41
446 m AMSL Tipping bucket rain gauge
ID: RGO3
3 47°24°24480"N,  PARSIVEL disdrometer*
8°37°57.720"E ID: P22
455 m AMSL
4 47°24°49.680"N,  PARSIVEL disdrometer
8°38°8.520"E ID: P21
435 m AMSL Tipping bucket rain gauge
ID: RG02
5 47°24°59.760"N,  PARSIVEL disdrometer
8°38°16.800"E ID: P20
433 m AMSL Tipping bucket rain gauge
ID: RG04
CML antenna

*Note: the only site with unrestricted access
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An additional three weather stations operated by MeteoSwiss provided comprehensive weather data at sites located 6 to
10 km from the experimental site (Fig. 1). Data were extracted using CLIMAP software provided by MeteoSwiss. In addition,
there were two stations of the Automatic Weather Observation Systems (MIDAS 1V, Vaisala) at the Diibendorf airport. The
MIDAS IV system employed two sensors at both ends of the runway as these weather stations provide data primarily used for

airport operations. The temporal resolution varied between 3 and 60 s depending on the weather parameter.
2.4 Measured variables

Microwave data were available between 17 March 2011 and 15 April 2012. These data were not processed, nor were parameters

converted or any filtering done. The columns of the microwave link datafiles are organised as described in Appendix D. The



120

125

130

Earth System
Science

Data

https://doi.org/10.5194/essd-2021-3
Preprint. Discussion started: 11 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Open Access
suoIssnasIq

Table 2. Location of the MeteoSwiss weather stations.

Weather station Name MeteoSwiss STN  Geographic coordinates [m]

ZH_Aff Ziirich Affoltern 83 47°25°39.780"N,
8°31°03.060"E
443 m AMSL

ZH_Flun Ziirich Fluntern 71 47°22°41.310"N,
8°33’57.030"E
556 m AMSL

ZH_Klo Ziirich Kloten 59 47°28°46.640"N,
8°32°09.890"E
436 m AMSL

Table 3. Location of the airport weather stations.

Weather station  Geographic coordinates [m]

Site 11 47°24°06.1194"N,
8°38°09.4164"E

Site 29 47°23°43.6158"N
8°39°34.2066"E

sampling interval of the readings was 4 s. Missing observations are denoted by "NA". Figure 3 presents an example of the
observed received power for 22 June 2011.

The disdrometers collected data from 11 March 2011 (for P41 from 16 April 2011) to 29 April 2012, and the disdrometer files
provided raw data collected by PARSIVELSs in 30 s resolutions (see Appendix C for details). The eight types of precipitation
(parameter 07 and 08) were classified based on a velocity-diameter relationship (Loffler-Mang and Joss, 2000). Parameter 16
registered the status of the optical lenses. The raw spectrum of 32x32 drop counts is in parameter 21 (diameter classes x
velocity classes). Figure 4 illustrates the observations of the disdrometers.

The tipping bucket rain gauges collected data from 12 March 2011 (for RG04 from 17 March 2011) to 21 March 2012 (for
RGO04 to 20 March 2012). The rain gauge data had been partly processed. The regular temporal sampling resolution was set to
1 min and the leap year (29 February 2012) had been accounted for. The columns of the datafiles were organised as described
in Appendix E. Missing measurements are denoted by "NA".

The comparison of cumulative rain of the three rain gauges and five disdrometers for the whole period of the campaign is

presented in Fig. 5. It can be seen that both types of devices are in general in good agreement.
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Figure 3. Example of measured received power for 22 June 2011 when antennas were not shielded. Green colours label the direction from
site 1 to site 5 (D->W) and blue W->D. Light colours depict horizontal polarizations and dark colours vertical polarization. Red vertical lines

indicate NA values (not present during this event).
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Figure 4. Example of disdrometer data for 22 June 2011 at site 3 (disdrometer P22). (left) scatterplot of the number of drops according to

the velocity (terminal fall speed) and size (equi-volumetric drop diameter) classes (right) temporal evolution of the DSD.

The atmospheric variables of the MeteoSwiss weather stations, collected for the time period from 1 March 2011 to 22 April
2012, are presented in Appendix F. There are 14 parameters in total, including air temperature, air pressure, wind, precipitation,
sun radiation, sunlight duration and dew point. The variables were recorded with a 10-min time step.
135 The airport weather station data, collected for the time period from 1 March 2011 to 27 September 2011, contains all major

weather characteristics with columns organised as described in Appendix G.
2.5 Data quality and reliability

Major field visits were conducted on 6 July 2011, 19 October, 15 March 2012 and 21 March 2012 to maintain the instruments.

The rain gauges were dynamically calibrated in the laboratory.
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Figure 5. Comparison of cumulative rain of the three rain gauges. The operation of one rain gauge was interrupted in July 2011. Another rain
gauge was partially blocked from the middle of June 2011 until the 6 July 2011. The same rain gauge recorded unrealistic rainfall in August
2011. The outages of disdrometers between December and February caused an underestimation of rain amounts in this period. Disdrometer

P22 recorded unrealistic rain amounts on 7 and 8 February 2012. Despite this, both types of devices are, in general, in good agreement.

The CML had almost no technical issues causing problems with data collection. Nevertheless, the unit at site 1 (Diibendorf)
was not working properly in the period between 16 September 2011 and 9 October 2011 where no data is available.

The disdrometers P20, P21 and P22 did not provide uninterrupted data between 14 October 2011 and 4 November 2011. All
disdrometers partially malfunctioned between 7 December 2011 and 14 January 2012; and 26 January 2012 and 3 February
2012 because of power shortage. A significant overestimation of rainfall occurred on 7 and 8 February 2012 when P22 measured
around 300 mm of cumulative rainfall. Unfortunately, site 3 did not provide data from a collocated rain gauge for comparison.
The filter presented in Jaffrain and Berne (2011) can be used to remove dubious measurements while preserving rain drops.

One of the tipping bucket rain gauges faced technical issues that constrained the data collection. The greatest data availability
gap, due to low batteries, happened at site 4 (RG02) between 6 July 2011 and 16 March 2012.

Figure 5 presents a comparison of cumulative rain collected by the rain gauges and disdrometers and shows a good temporal
match of measured data. The outages of disdrometers between December and February, described above, caused the underes-
timation of rain amounts during this period. RG02 corresponds to RGO03 for the entire time period when it was in operation.
RGO04 was blocked from the middle of June 2011 until the 6 July 2011. There was also unrealistic rainfall recorded by RG04
on 24 August 2011. In total, 139.7 mm of rainfall were measured within 2.5 h, probably an artefact due to vandalism. The
collocated disdrometer (P20) also showed a dissimilar temporal evolution of rain rate to the other disdrometers. Both quality
issues appeared at site 5 and were probably caused by the moving of the instrumentation during lawn mowing.

The data from weather stations of MeteoSwiss and the airport are rather continuous and consistent.
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Common_dataset
Raw_datafiles

Airport_weather_stations
ex: SiteName_YYYY-MM-DD.dat

Site_11 Site_29
The folder contains files for each airport weather station separately.
ex. of data structure: "2011-09-25 00:00:00",12.4,11.63,95,966.5,0,0,360
CML
ex: CML_YYYYMMDD.dat
The folder contains files with all the transmitted and received power in both

polarizations and directions.
ex. of data structure: "2011-07-24 00:

Disdrometers
ex: DisdrometerNumber_ascii_YYYYMMDD.dat

P21 P40 P41

The folder contains files for each disdrometer separately.

00:00:0 0", -

9.999" "5000","1797","0","1","0.05","11.5","3","0.022" "Debug data: T 141
210323232 35108 23812103232 591T599512103232 35108 8731
2103232 1233T712411210323232 35111 1491 14673 1570 2225 2768

2844 ms" vector of 32 values, vector of 32 values, vector of 1024 values,"0"

MeteoSwiss_weather_stations
ex: MeteoSwissStation_YYYY-MM-DD.dat

Affoltern  Fluntern Kloten
The folder contains files for each MeteoSwiss weather station separately.
ex. of data structure: 83,2011-03-01
00:00:00,3.6,NA,NA,970.2,0.5,0,0,0,103,0.2,1024.5,1022.9,0,1.8,0.1

Rain_gauges
ex: RainGaugeName_YYYYMMDD.dat
RGO2 RGO3 RG04

The folder contains files for each rain gauge site separately.

Figure 6. The organisation scheme of the files in folders.

3 The database
3.1 Description of raw data

The raw data files are stored in various ASCII formats in folders based on the device/weather station and are available at daily

resolutions. The files are organised as depicted in Fig. 6. The filename format examples are presented for each folder.
3.2 Tool/HTML viewer

To facilitate the efficient exploration of the data plots, the html file makes it possible to readily plot pre-defined views of one
selected day. The folders are related to the main data sources: the CML, the disdrometers, the rain gauges, the MeteoSwiss
and airport weather stations. The intensity of red colour in the campaign calendar describes the daily cumulative rainfall depth
which enables the user to choose the most interesting days and explore them further. Once the day is selected, the plots in each

folder are displayed.

10
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Table 4. Summary of plotted quantities.

CML Received power (x10) [dBm]
Transmitted power [dBm]
Disdrometers Rain rate [mm h']

Cumulative rainfall [mm)]
Drop diameter and fall velocity distribution

Temporal evolution of drop diameter

Rain gauges

Rain rate [mm h']

Cumulative rainfall [mm)]

MeteoSwiss weather stations

Sun radiation (10 min mean) [W m™?]
Sunlight duration (10 min mean) [min]
Temperature (10 min) [°C]

Wind direction (10 min mean) [°]

Wind speed (10 min mean) [m s']

Airport weather stations

Dew point [°C]

Atmospheric pressure [hPa]
Relative humidity [%]

Rain intensity [mm h'
Cumulative rainfall [mm]
Temperature [°C]

Wind direction (10 min mean) [°]

Wind speed (10 min mean) [m s

There are eight pre-defined views in the drop-down menu in the viewer. The first view plots CML data accompanied by data

from RGO3 from site 2 which is located in the middle of the link path. Views two and three present rainfall intensities from
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the disdrometers, missing values and drop size distributions. The fourth view displays rain gauge data and its missing values.

Views five and six display the data and missing values from the airport weather stations and the last two views concern the data

and missing values from the MeteoSwiss weather stations. Note that November 2012 was extremely dry, therefore no rainfall

was recorded.

Table 4 summarizes the daily plots of measured quantities. All plotted quantities are accompanied by a plot of missing

values. Each column in those figures represents one hour of the day. The proportional amount of missing values in each hour

is displayed in red.

11
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4 Applications of the dataset and outlook

The following section contains a short review of important open issues related to rainfall estimation using microwave links for

which the CoMMon field campaign has helped develop or could provide valuable input in future research.
4.1 Dry/wet classification and baseline estimation

Based on the dataset, Wang et al. (2012) developed a new algorithm for classifying dry/wet periods and estimating baseline
attenuation using a Markov switching model which outperformed a previous method based on the standard deviation of link
attenuation over a moving time window by Schleiss and Berne (2010). Using factor graph theory and robust local linear
regression, Reller et al. (2011) and Schatzmann et al. (2012) used the CoMMon dataset to develop two alternative baseline

models with similar offline/online performances.
4.2 Wet antenna attenuation

Based on data collected during the CoMMon experiment, Schleiss et al. (2013) quantified the magnitude and dynamics of wet-
antenna attenuation (WAA) affecting commercial microwave links at 38 GHz. They found WAA values in the order of 1-2 dB,
with an upper bound at about 2.3 dB. Furthermore, WAA increased exponentially during the first 5-20 min of rain and decreased
exponentially as soon as the rain stopped. Figure 7 presents an example of the attenuation pattern caused by a wet antenna.
The rate at which WAA decreased after an event showed substantial variation, ranging from a few minutes to several hours
depending on temperature, wind and humidity. In a follow-up study, Fencl et al. (2014) assessed the effectiveness of direct
antenna shielding for mitigating WAA compared with post-processing techniques. They found that antenna shielding helps
substantially reduce biases in rainfall estimates. However, shielding did not outperform model-based corrections as shielded
antennas still experienced attenuation, even when the face of the radome was completely dry. Whether this is caused by the
attenuation of side-lobes or are side effects of the environment built is presently unknown to the authors.

There are still several unresolved questions related to WAA, such as the effect of horizontal/vertical polarization on WAA
magnitude or the quantification of WAA during fog and dew events. For example, de Vos et al. (2019) showed that errors in
CML quantitative precipitation estimates are the largest for observations during late night and early morning periods when dew
is more likely to form on antennas. Van Leth et al. (2018) observed additional attenuation in the order of 3 dB during foggy
weather conditions and whenever dew was present on the antennas. However, modelling these effects remains challenging.
The CoMMon dataset could help gain new insight into these issues, for example, by further investigating WAA due to dew

formation on antenna radomes (Fig. 8).
4.3 DSD retrieval and DSD related errors

Attenuation data of microwave links operating at different frequencies or polarizations could be, in theory, used for estimating
path-averaged raindrop size distributions (e.g., Rincon and Lang, 2002). Research on this issue is still ongoing. Recently,

Song et al. (2019) used a simulation study to illustrate how to retrieve DSDs from dual-frequency dual-polarization links.

12
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Figure 7. Wet antenna attenuation pattern. Rainfall causes signal resulting in residual wetness on the surface of the radomes. The return
of baseline attenuation to previous dry-weather levels is attributed to the drying of the antenna radomes (Van Leth et al., 2018). The same

behaviour was observed by new E-bands and reported recently in Fencl et al. (2020).
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Figure 8. Wet antenna attenuation due to dew formation causes substantial attenuation from approx. 18:00 on 27 November 2011 to 7:00 on
28 November 2011.

Another study by van Leth et al. (2020) based on a similar approach showed that reasonable performance on selected events
and idealized conditions can be achieved. However, retrieved DSD parameters are not always reliable and large uncertainties
remain due to quantization noise, baseline estimation and wet-antenna attenuation. These could possibly be reduced by using
the data to update prior knowledge on empirical drop size distributions using Bayesian data analysis.

Also, the high-quality CoMMon dataset could provide the evidence base to test different retrieval techniques and to assess

their strengths and limitations.
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Last, but not least, detailed data on rainfall microphysics and microwave attenuation from operational devices can be ex-

tremely useful to radio engineers (Kvicera et al., 2009).
4.4 Outlook

There are still many unsolved issues regarding how to effectively retrieve precipitation from the microwave attenuation in
praxis. Given the high temporal resolution, the CoMMon data might be most useful in improving our understanding of antenna
wetting, baseline dynamics and the impact of variable DSDs.

First, wet antenna attenuation and dew formation on antennas are phenomena that need to be described more precisely to
avoid the overestimation of rainfall. Several studies have suggested that correcting for wet antenna attenuation can significantly
enhance results (Leijnse et al., 2008; Pastorek et al., submitted). Most probably, corrections cannot be based on frequency and
signal dynamics only, since the atmospheric state around the CML varies. In other words, temperature, relative humidity,
radiation and wind probably have a more significant impact on the drying time of the antennas as well as the conditions prior
to wetting. To what extent machine learning (Habi and Messer, 2018), trained on many CoMMon-type datasets, can provide
an empirical solution remains to be seen.

Second, the baseline of transmitted minus received power is often approximated as constant, even though substantial varia-
tions during dry weather have been reported (Wang et al., 2012) and there is little evidence that the baseline remains stationary
during wet periods. Different dry-wet weather classification approaches were presented in Schleiss and Berne (2010), Overeem
et al. (2011) or Polz et al. (2020). A benchmarking activity with many datasets from different sites and climatic regions is still
lacking.

Scattering theory suggests that a larger variation of drop size distribution challenges more precise retrieval for longer links
(Leijnse et al., 2010). The disdrometer observations in the CoMMon dataset can also be used to build simulators making it
possible to better understand the attenuation-rainfall relation and assess CML rainfall retrieval uncertainties related to variable
DSDs (Berne and Uijlenhoet, 2007; Schleiss et al., 2012).

Variable DSDs also represent major uncertainties at CMLs with higher frequency bands. Although, to date, most CMLs use
frequencies from 5 GHz to 40 GHz, the spectrum is currently further extended to 80 GHz. Recently, Fencl et al. (2020) used
PARSIVEL observations from the CoMMon dataset to simulate rainfall retrieval from an E-band CML which demonstrated
that these may be promising tools for sensing light rainfall which is challenging for lower frequencies due to the quantization
of the attenuation data (Berne and Schleiss, 2009). In a similar fashion, CMLs are "blind" regarding extremely high intensities
as attenuation due to such high intensities drops below the receiver threshold of the hardware and causes outages of the CML
(cf. event on 5 August 2011). How this can be solved by "inputting" missing observations based on signals from nearby sensors
(Mital et al., 2020), remains to be seen.

Melting snow causes large attenuation of EM waves at frequencies commonly used by CMLs (ITU-R, 2015). Upton et al.
(2007) identified periods with melting snow by analysing attenuation data of dual-frequency microwave links operating at
12.8 GHz/17.6 GHz and 10.5 GHz/17.5 GHz. Ostrometzky et al. (2015) suggested using CMLs operating at multiple frequen-

cies to distinguish between periods with snow, melting snow and rainfall and thus improve estimation of total accumulated

14
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precipitation. Attenuation of EM waves by ice particles, however, remains challenging to simulate due to complex shapes of
these hydrometeors. Moreover, ice particles containing liquid water interact with EM waves in substantially different manner
(Eriksson, 2018).

5 Data accessibility

Data from CML, disdrometers and rain gauges, and nearby weather stations are available with data files stored in the Zenodo
repository at https://doi.org/10.5281/zenodo.4524632 (Spackovi et al., 2020). The citation should be used as follows:

- For the paper: Spaékové, A., Bares, V., Fencl, M., Schleiss, M., Jaffrain, J., Berne, A., and Rieckermann, J.: One year of
attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge and weather
observations, Earth Syst. Sci. Data, submitted.

- For the database: gpaékové, A., Jaffrain, J., Wang, Z., Schleiss, M., Fencl, M., Bares, V., Berne, A., and Rieckermann, J.:
One year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge
and weather observations, [Data set], Zenodo, https://doi.org/10.5281/zenodo0.4524632, 2020.

The dataset is available for reuse under a CC BY 4.0 license. License terms apply.

6 Conclusions

The data from the CoMMon field campaign described in this paper is relevant for the remote sensing of rainfall, as well as for
the design of outage-free terrestrial wireless communication systems. The unique dataset provides a comprehensive package
of attenuation data from a 38 GHz dual-polarized microwave link with concurrent disdrometer and rain gauge measurements
in (sub-)minute resolution. In addition, meteorological data from the weather stations of MeteoSwiss and Diibendorf airport

were included. The main conclusions are:

— The remote sensing of precipitation and related atmospheric phenomena, such as dew, remains a relevant problem. Using
signals from commercial telecommunication microwave links to learn about these phenomena seems promising because
they cover sparsely or completely ungauged regions and can be queried remotely and fast. The open CoMMon dataset
makes a unique contribution by providing dual-polarized transmitted and received power levels, as well as ground-level
observations of precipitation microphysics and local weather. It fosters the interconnection of datasets which can be used

to better understand scattering phenomena and benchmark retrieval methods.

— The dataset represents a duration of one year and contains data from i) a single 38-GHZ dual polarized CML with a
length of 1.85 km; ii) collocated observations of five disdrometers; iii) three rain gauges; and iv) observations from five
nearby weather stations. Specific highlights are, first, that the antenna radomes were protected by custom shielding for
approximately half of the period of the campaign, thus making it possible to investigate the impact of antenna wetting

which is still considered a major disturbance for rainfall retrieval. Second, the data are provided in sub-minute resolutions
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making it possible to investigate the detailed dynamics of the involved processes. Third, the dataset contains periods with

rain but also periods during which ice hydrometeors including snow and melting snow occured (see Appendix H).

Although the experimental campaign faced expected difficulties regarding sensor malfunctioning, data outages, etc.,
these episodes are well documented and, thus, do not compromise the satisfactory quality of the dataset. The provided
static HTML viewer also makes it easy to explore the data by pre-configured views of daily time series. For example,
by focusing on days with intense or little precipitation, typical dynamics of the observed processes can be screened

effortlessly.

The dataset contains unique evidence regarding several processes such as the wetting and drying of antenna radomes
and outdoor units or the impact of temperature and wind. We encourage several applications, from investigating base-
line separation to wetting phenomena, such as dew, which had much slower dynamics in comparison to rain-induced

attenuation, to the retrieval of drop-size distributions from the joint analysis of horizontal and vertical polarizations.

— In the future, the CoMMon dataset can be used to further investigate challenging issues in the remote sensing of rainfall,

such as the classification of dry/wet periods, space-time variability of DSDs or even the analysis of fade margins for

better radio network design.
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Appendix A: PARSIVEL drop diameter classes

Table A1. PARSIVEL drop diameter classes

Particle diameter classes

Class number Class Average (mm) Class Spread (mm)
1 0.062 0.125
2 0.187 0.125
3 0.312 0.125
4 0.437 0.125
5 0.562 0.125
6 0.687 0.125
7 0.812 0.125
8 0.937 0.125
9 1.062 0.125
10 1.187 0.125
11 1.375 0.250
12 1.625 0.250
13 1.875 0.250
14 2.125 0.250
15 2.375 0.250
16 2.750 0.500
17 3.250 0.500
18 3.750 0.500
19 4.250 0.500

20 4.750 0.500
21 5.500 1.000
22 6.500 1.000
23 7.500 1.000
24 8.500 1.000
25 9.500 1.000
26 11.000 2.000
27 13.000 2.000
28 15.000 2.000
29 17.000 2.000
30 19.000 2.000
31 21.500 3.000
32 24.500 3.000
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Appendix B: PARSIVEL drop velocity classes

Table B1. PARSIVEL drop velocity classes

Particle velocity classes

Class number Class Average (m s Class Spread (m )
1 0.050 0.100
2 0.150 0.100
3 0.250 0.100
4 0.350 0.100
5 0.450 0.100
6 0.550 0.100
7 0.650 0.100
8 0.750 0.100
9 0.850 0.100
10 0.950 0.100
11 1.100 0.200
12 1.300 0.200
13 1.500 0.200
14 1.700 0.200
15 1.900 0.200
16 2.200 0.400
17 2.600 0.400
18 3.000 0.400
19 3.400 0.400

20 3.800 0.400
21 4.400 0.800
22 5.200 0.800
23 6.000 0.800
24 6.800 0.800
25 7.600 0.800
26 8.800 1.600
27 10.400 1.600
28 12.000 1.600
29 13.600 1.600
30 15.200 1.600
31 17.600 3.200
32 20.800 3.200
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Appendix C: PARSIVEL raw data parameters

Table C1. PARSIVEL raw data parameters

Position Parameter Format Units
1 Date and Time YYYY-MM-DD hh:mm:ss UTC
2 Record number - -

3 Logger temperature - °C

4 Logger voltage - v

5 PARSIVEL rain rate - mm h!
6 PARSIVEL rain amount - mm
7 Precipitation code 4680 - -

8 Precipitation code 4677 - -

9 PARSIVEL radar reflectivity - dBZ
10 Visibility in the precipitation - m
11 Laser amplitude - -

12 Number of particles detected - -

13 PARSIVEL temperature - °C
14 PARSIVEL heating current - A
15 PARSIVEL voltage - \"
16 PARSIVEL status - -
17 Absolute amount - mm
18 Transmit time - -

19 Field N Vector of 32 values m> mm
20 Field v Vector of 32 values ms?
21 Raw data Vector of 1024 values -
22 Communication error - -

Parameter 16 registers the status of the optical lenses (0 — everything OK, 1 — laser protective glass is dirty, but

measurements are still possible, 2 — laser protective glass is dirty, partially covered, no further usable

measurements are possible, 3 — laser damaged).
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Appendix D: CML: measured parameters

Table D1. CML: measured parameters

Column no. Parameter Units
1 Date and time, format YYYY-MM-DD hh:mm:ss  UTC
2 TxW — D,H dBm
3 Rxx10W — D, H dBm
4 TxW —D,V dBm
5 Rxxl0OW —D,V dBm
6 TxD — W, H dBm
7 Rxx10D — W, H dBm
8 TxD — W,V dBm
9 Rxx10D — W,V dBm

Transmitted power (Tx); Received power (Rx); Horizontal polarization (H); Vertical polarization

(V); site 5 - Wangen (W); site 1 - Diibendorf (D); — direction of the signal

295 Appendix E: Rain gauges: measured parameters

Table E1. Rain gauges: measured parameters

Column no. Parameter Units
1 Date and time, format YYYY-MM-DD hh:mm:ss UTC
2 Number of tips per time step -
3 Rain rate mm h!
4 Rain amount per time step mm
5 Cumulative rain amount mm
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Appendix F: MeteoSwiss weather station parameters

Table F1. MeteoSwiss weather station parameters
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Data
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Column no. MeteoSwiss name Description Measurement sampling
1 STN MeteoSwiss station number
2 time Measurement time, format YYYY-MM-DD hh:mm:ss
3 tre200s0 Air temperature 2 m above ground Instantaneous (10 min resolution)
4 tko200ax Air temperature 2 m above ground Half-day max
5 tko200an Air temperature 2 m above ground Half-day min
6 prestasO Air pressure at the height of the station Instantaneous (10 min resolution)
7 fk1010z1 Gust wind speed Maximum
8 rre150z0 Precipitation 10-min sum
9 rco150z0 Precipitation duration 10-min sum
10 sre000z0 Sunlight duration 10-min sum
11 dk1010z0 Wind direction 10-min mean
12 fk1010z0 Wind speed 10-min mean
13 ppOgsO Air pressure at sea level Instantaneous (10 min resolution)
14 ppOgqnhsO Air pressure at sea level in standard atmosphere Instantaneous (10 min resolution)
15 gre000z0 Sun radiation 10-min mean
16 tre005s0 Air temperature at 5 cm above grass Instantaneous (10 min resolution)
17 tde200s0 Dew point at 2 m above ground Instantaneous (10 min resolution)

Appendix G: Airport weather station parameters

Table G1. Airport weather station parameters

Column no. Parameter Units
1 Date and time, format YYYY-MM-DD hh:mm:ss UTC
2 Temperature °C
3 Dew point °C
4 Relative humidity %
5 Pressure hPa
6 Rain intensity mm h!
7 Wind speed ms’!
8 Wind direction °
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